185 research outputs found

    Identification of Elg1 interaction partners and effects on post-replication chromatin re-formation

    Get PDF
    We thank members of the Donaldson, Kubota, and Lorenz labs for helpful discussion, Sophie Shaw at the University of Aberdeen for data upload to Array Express and Shin-ichiro Hiraga for help with Bioinformatic analysis. This work was supported by BBSRC Grant BB/K006304/1 and Cancer Research UK Programme Award A19059 to ADD, and Wellcome Trust Grant 095062 to TOH. KS was supported by Grant-in-Aid for Scientific Research on Priority Areas (15H05970 and 15K21761) from Ministry of Education, Culture, Sports, Science and Technology, Japan All raw-data files for MNase-Seq and ChIP-Seq data are uploaded to Array Express under accession number: E-MTAB-6985.Peer reviewedPublisher PD

    Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription

    Get PDF
    Specialized topoisomerases solve the topological constraints arising when replication forks encounter transcription. We have investigated the contribution of Top2 in S phase transcription. Specifically in S phase, Top2 binds intergenic regions close to transcribed genes. The Top2-bound loci exhibit low nucleosome density and accumulate gammaH2A when Top2 is defective. These intergenic loci associate with the HMG protein Hmo1 throughout the cell cycle and are refractory to the histone variant Htz1. In top2 mutants, Hmo1 is deleterious and accumulates at pericentromeric regions in G2/M. Our data indicate that Top2 is dispensable for transcription and that Hmo1 and Top2 bind in the proximity of genes transcribed in S phase suppressing chromosome fragility at the M-G1 transition. We propose that an Hmo1-dependent epigenetic signature together with Top2 mediate an S phase architectural pathway to preserve genome integrity

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    A DNA Polymerase α Accessory Protein, Mcl1, Is Required for Propagation of Centromere Structures in Fission Yeast

    Get PDF
    Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase α (Polα) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of Polα. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Polα. These results suggest that Mcl1 and Polα are required for propagation of centromere chromatin structures during DNA replication

    The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae

    Get PDF
    Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced

    No Origin, No Problem for Yeast DNA Replication

    Get PDF
    Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unknown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that these deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism

    Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting

    Get PDF
    The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres

    A region-based palliative care intervention trial using the mixed-method approach: Japan OPTIM study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disseminating palliative care is a critical task throughout the world. Several outcome studies explored the effects of regional palliative care programs on a variety of end-points, and some qualitative studies investigated the process of developing community palliative care networks. These studies provide important insights into the potential benefits of regional palliative care programs, but the clinical implications are still limited, because: 1) many interventions included fundamental changes in the structure of the health care system, and, thus, the results would not be applicable for many regions where structural changes are difficult or unfeasible; 2) patient-oriented outcomes were not measured or explored only in a small number of populations, and interpretation of the results from a patient's view is difficult; and 3) no studies adopted a mixed-method approach using both quantitative and qualitative methodologies to interpret the complex phenomenon from multidimensional perspectives.</p> <p>Methods/designs</p> <p>This is a mixed-method regional intervention trial, consisting of a pre-post outcome study and qualitative process studies. The primary aim of the pre-post outcome study is to evaluate the change in the number of home deaths, use of specialized palliative care services, patient-reported quality of palliative care, and family-reported quality of palliative care after regional palliative care intervention. The secondary aim is to explore the changes in a variety of outcomes, including patients' quality of life, pain intensity, family care burden, and physicians' and nurses' knowledge, difficulties, and self-perceived practice. Outcome measurements used in this study include the Care Evaluation Scale, Good Death Inventory, Brief pain Inventory, Caregiving Consequence Inventory, Sense of Security Scale, Palliative Care Knowledge test, Palliative Care Difficulties Scale, and Palliative Care Self-reported Practice Scale. Study populations are a nearly representative sample of advanced cancer patients, bereaved family members, physicians, and nurses in the region.</p> <p>Qualitative process studies consist of 3 studies with each aim: 1) to describe the process in developing regional palliative care in each local context, 2) to understand how and why the regional palliative care program led to changes in the region and to propose a model for shaping regional palliative care, and 3) to systemically collect the barriers of palliative care at a regional level and potential resolutions. The study methodology is a case descriptive study, a grounded theory approach based on interviews, and a content analysis based on systemically collected data, respectively.</p> <p>Discussion</p> <p>This study is, to our knowledge, one of the most comprehensive evaluations of a region-based palliative care intervention program. This study has 3 unique aspects: 1) it measures a wide range of outcomes, including quality of care and quality of life measures specifically designed for palliative care populations, whether patients died where they actually preferred, the changes in physicians and nurses at a regional level; 2) adopts qualitative studies along with quantitative evaluations; and 3) the intervention is without a fundamental change in health care systems. A comprehensive understanding of the findings in this study will contribute to a deeper insight into how to develop community palliative care.</p> <p>Trial Registration</p> <p>UMIN Clinical Trials Registry (UMIN-CTR), Japan, UMIN000001274.</p
    corecore